
 P AUL O SETINSKY
 paulosetinsky.com | p.osetinsky@gmail.com | 917-376-5061

 Experienced software engineer specializing in backend systems for creative media applications.

 Demonstrated expertise in managing the software development lifecycle for large-scale, complex

 projects in games, video, fintech, and crypto. Currently seeking innovative audio/visual projects

 utilizing AI to advance creativity and empower builders.

 Highlights
 ○ Led backend teams in building microservices/ML infra for games with millions of players

 ○ Projects: AI word games; beatmatched audio/video syncing; real-time audio synthesis,

 streaming, and control via WebRTC; custom-trained GANs for blockchain pixel art

 ○ M.A. in computer music; developed novel synthesis technique around signal separation

 ○ Co-created NFT collection with 1,800 ETH in volume; wrote smart contracts and art algos

 ○ Designed, built, and shipped backend/infra for complex tax tracking app, from scratch

 ○ Excellent writer: documentation for async collaboration, essays, LLM prompt engineering

 ○ Humble team player driven to learn, collaborate, and lead through the innovation process

 Recent Experience (New York, NY)

 1,989 Sisters
 Co-creator | Aug. 2021 – Present

 NFT collection in collaboration with fashion artist Blair Breitenstein. Our

 collection is unique in how it exhibits close collaboration between artist and

 engineer to arrange dozens of hand-drawn assets into hundreds of pieces of

 digital collage. 1,989 Sisters attracted celebrity buyers, was featured by

 OpenSea, and has reached over 1,800 ETH in total sales.

 ○ Rapidly learned Solidity to write code for smart contracts under tight deadlines; built

 ingestion and tagging systems for digitized paintings; designed algorithms for generative

 art with nuanced rules for layering specific assets in visually compatible ways; devised

 trait rarity distribution; wrote scripts for structuring and uploading metadata to IPFS

 ○ Significant testing of (a) art algorithms to ensure artistic quality, uniqueness of traits, and

 validity of metadata; and (b) smart contracts through local unit tests and deployed

 integration tests on Rinkeby testnet and various NFT marketplaces

 ○ Utilized factory patterns and lazy minting to enable bundled NFT purchases and defer

 minting costs to buyers at time of sale. This approach saved our self-funded team

 ~$100k in upfront gas fees and made the project financially feasible

 ○ Contributed to Manifold Royalty Registry to support royalty distributions to EOAs proving

 indirect ownership of tokens through direct ownership of factory contract addresses

 ○ Toolkit: Solidity, Ruby, Shell, JavaScript/Truffle, IPFS, Piñata, OpenSea

https://paulosetinsky.com/
mailto:p.osetinsky@gmail.com
tel:917-376-5061
https://blur.io/collection/1989-sisters?traits=%7B%22Iconic%22:%5B%22Triple%22,%22Double%22,%22Single%22%5D%7D
https://twitter.com/ParisHilton/status/1489052983396425729
https://etherscan.io/token/0x657fabdb226abc59227e02e94089afbc67a597fe#code
https://ipfs.tech/
https://www.alchemy.com/overviews/lazy-minting
https://github.com/manifoldxyz/royalty-registry-solidity/pull/25

 Upward
 Founding CTO | Feb. 2021 – Feb. 2024

 Upward was a tax tracking iOS app that targeted the growing number of U.S.

 multi-earners : people with multiple streams of income. After I did some initial

 consulting for the CEO, he invited me to build out the product. Despite our best

 efforts, Upward failed to gain enough traction and shut down in February 2024.

 The Problem

 It’s frustratingly difficult to project how much you’ll owe in taxes throughout the year. This is

 especially true if you have investment or self-employment income, both of which are moving

 targets. This uncertainty makes it virtually impossible for taxpayers to plan, save, and minimize

 their tax liabilities. Upward aimed to solve this problem by providing users with features to sync

 financial accounts and track their income, surface deductions, and receive real-time tax

 calculations down to the individual transaction level.

 Technical Work

 ○ Architected, built, tested, and shipped all backend services; emphasized thorough

 designs and documentation to reach agreement with the team and avoid costly mistakes

 ○ Features: authentication (Apple ID, Email); Plaid integrations/webhooks for account

 syncing, error handling, and event-triggered transaction imports; subscription payments

 (and cancellations), transaction categorization, user-defined rules for auto-categorizing

 transactions, tax calculations for W2, 1099, and investment income (cap gains, interest,

 dividends); session-aware push notifs (FCM); search/filtering of transactions; user metrics

 ○ Infrastructure: ECS for multi-container services, ECR for registering Docker containers;

 EC2 web and worker instances; SQS queues for long-running account syncing jobs; RDS

 for PostgreSQL database; ElasticBeanstalk with best-practice orchestration of services

 ○ Utilized DBSCAN for clustering noisy transactions by counterparty to facilitate bulk user

 modifications; LLMs to make messy data human-readable (scrubadub to strip PII)

 ○ Backend: Ruby (core business logic), Python (data clustering algorithms)

 ○ CI/CD: AWS CLI (ECR, ECS, EB), Fastlane, TestFlight, Github Actions

 ○ Monitoring & Instrumentation: New Relic, Sentry, CloudWatch, PagerDuty

 Leadership

 ○ Built and led a small, distributed team of iOS engineers, brand experts, and designers;

 daily standups, sprints, code reviews, pair programming, and project management

 ○ Worked closely with the CEO to develop a sufficient understanding of the tax code in

 order to write sound API business logic, intuitive UI copy, and branding material

 ○ Eventually took on the majority of UI/UX design work. Learned Figma and rudimentary

 design principles, creating realistic prototypes for the CEO and test users, as well as

 implementable frontend deliverables for iOS and QA engineers

https://paulosetinsky.com/upward_plaid_flows_all.png
https://plaid.com/docs/api/products/transactions/
https://aws.amazon.com/blogs/security/hardening-the-security-of-your-aws-elastic-beanstalk-application-the-well-architected-way/
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/cluster/_dbscan.py
https://scrubadub.readthedocs.io/en/stable/
https://upward-prod.webflow.io/
https://www.figma.com/file/HyUVYS8rUMoYlC3G4G7thc/UpwardLegacyDemo?type=design&node-id=0%3A1&mode=design&t=7F9EySCHYDrcmprH-1

 Dots Acquired by Take-Two in 2020, Dots made beautiful puzzle games played by

 millions. I initially focused on backend and infrastructure for their flagship

 game Two Dots before leading the development of a game-agnostic suite of

 microservices and ML pipelines. Prototyped backends for several of the studio’s

 exploratory multiplayer games, my own real-time variant of tic-tac-toe, and read

 research papers to inform GAN experiments for generative puzzle creation.

 Staff Engineer | Jul. 2020 – Dec. 2020

 ML Systems

 ○ Worked closely with the data team to design, build, and ship production systems that

 utilized ML models for predicting user churn and spend likelihood (random forest

 classifiers). Predictions were primarily used to adjust the frequency of advertisements

 displayed to players (low churn probability, more ads; high spend probability, less ads).

 Upon deployment, these services increased revenues by ~$60k/mo.

 ○ The prediction service accepted player IDs that were queued in nightly background jobs

 that made the predictions. Worker instances used these IDs to query analytics datastores

 for player attributes that were passed as payloads via local POST requests to the

 respective churn and spend model servers. These models were served from separate

 containers within the same ECS cluster as the worker instances, and the predictions were

 stored for future retrieval and responses from game-facing APIs.

 ○ Python (Flask), ElasticBeanstalk, S3, ECS, SQS, EC2 (web/worker), Docker, SageMaker

 Game/Admin Microservices

 ○ Led development of a large suite of microservices powering production and experimental

 games. Services included containerized API gateways (public/admin), internal APIs

 powering admin dashboards, and game-facing APIs for player accounts, wallets,

 leaderboards, inventory catalogs, segmentation (experimentation/skill-based placements

 for multiplayer modes), live events and experiments, and data/analytics pipelines.

 ○ Python (Falcon), Protobufs, PostgreSQL, Redis (ElastiCache), Kafka, Kubernetes

 Senior Backend Engineer | Jul. 2017 – Jul. 2020

 ○ Built well-tested APIs for new game features in Two Dots; on-call duty to fix rare fires

 ○ Refactored much of the monolithic Ruby/Rails application to improve uptime and reduce

 latency by 10x (~250ms to 25ms) while throughput tripled (~25k rpm to 75k rpm)

 Past Experience

 VHX (acquired by Vimeo) | Senior Backend Engineer | Dec. 2015 – Jul. 2017 | New York, NY

 Treatings | Co-founder & CTO | Mar. 2012 – Nov. 2015 | New York, NY

 BlackRock | Analyst | Sep. 2010 – Mar. 2012 | New York, NY

 Lombard Odier | Intern | Summer 2008 | Geneva, Switzerland

 World Health Organization | Intern | Spring 2007 | Geneva, Switzerland

https://apps.apple.com/gb/app/two-dots-brain-puzzle-games/id880178264
https://arxiv.org/abs/2306.15696
https://github.com/aws/amazon-sagemaker-examples/tree/main

 Selected Projects

 Riddler Not just another Wordle clone, Riddler is an autonomous word game that uses

 AIs to craft its own daily puzzles and clues. Your task is to reach the bottom of

 the word ladder using riddle and image hints to modify words, one letter at a

 time. Path-finding algorithms, meta-prompting with LLMs and DALL-E, Node.js,

 Processing, vanilla JS, HTML, and CSS; AWS EB, ElastiCache, S3, CloudFront.

 Fake Fiancé Fake Fiancé is an unreleased NFT collection I started in the early days of GANs.

 I trained StyleGAN on thousands of photos of my now wife to investigate how

 ordered pixels, like linguistic units, contribute to the syntax and semantics of

 visual perception. The project showcases data curation with eye-detection

 preprocessing, neural network tuning, and pixel rearrangement to oscillate

 between clear portraits and abstract pixel patterns. OpenCV (eye-detection and

 cropping), TensorFlow (GANs), ImageMagick (pixel manipulation), Shell, Ruby.

 Awestruck Awestruck is a model for real-time sound synthesis, streaming, and control over

 the Internet. Originally inspired by OpenProcessing , I now think that Awestruck

 has potential for harnessing LLMs to assist in writing synthesis code for a

 totally different, text-based approach to AI-generative music. Algorithmic music

 can transcend just bloops and bleeps: example (not my own music). Go,

 SuperCollider, JACK, GStreamer, Pion/WebRTC, and Docker.

 VBQ An experimental tool for syncing short videos to songs, Video Beat Quantizer

 (VBQ) has applications for combining separately constructed AI-generated

 video and audio tracks (Sora, Suno), dynamic soundtracking for targeted video

 advertisements, and on-the-fly processing for social media content. Python,

 FFmpeg (video manipulation), Librosa (beat tracking), Shell, and Docker.

 Education

 Dartmouth College | M.A. in Computer Music | 2008 – 2010

 ○ Received full scholarship and $30k fellowship for audio research and music composition

 ○ Thesis explored a novel, subtractive synthesis method with audio source separation. The

 resulting aural experience is analogous to seeing a blurred image coming into focus .

 ○ Teaching assistant for Music 9 (Music & Technology; Ableton Live and EDM production)

 Vanderbilt University | B.Sc. in Economics | 2004 – 2008

 ○ Phi Beta Kappa, Magna cum Laude. Coursework in music, piano performance, and CS

 ○ Teaching assistant for Econ 100 (Macro) and Econ 101 (Micro)

https://riddler.game/
https://bradfieldcs.com/algos/graphs/word-ladder/
https://arxiv.org/abs/2401.12954
https://paulosetinsky.com/
https://github.com/NVlabs/stylegan
https://github.com/po-studio/awestruck
https://openprocessing.org/
https://open.spotify.com/track/4VecDB1uhp44posWgt85yN?si=3ffa8c81ace24a42
https://github.com/po-studio/vbq
https://soundcloud.com/osetinsky/stratovinsky
https://paulosetinsky.com/elementary_sources.pdf

